
PROCEDURAL GENERATION GRID
USER MANUAL

About Procedural Generation Grid

- Procedural Generation Grid is a system which uses grids to define fields and paths
for procedural generation algorithms. I recommend checking the tutorials!

- System is designed to be flexible and able to generate very various and complex
objects/places. Have full control on the procedural generation logic!

- It can be used to generate procedurally whole game levels at runtime or for editor
use to quickly paint levels for speed up level design process.

- System is using something like visual scripting, so you don’t need to know how to code (but
you can still take benefits out of it) you just need to plan logics for your needs.

- Procedural Generation Grid is right now in Beta Stage so, many features may
change, new features will come and some small elements are not fully finished but
the developmental stage is completed enough to be functional in many cases.

- Package is providing additional packages for randomly placing smaller objects in
physical space using Unity’s collision system (Object Stamper and Pipe Generator)

- Package is not dedicated to generating giant worlds (it still can work like that), it’s
focusing on smaller detailed areas like room interior with furniture, tunnels with
many elements, presets for painting modular walls etc.

Contact and other links you will find in Readme.txt file

https://assetstore.unity.com/publishers/37262
https://www.youtube.com/watch?v=MjdGnLfh3O4&list=PL6MURe5By90mRPke0_vkxaqu0lRfeI8zl

Index

1: The Procedural Grid Generation System:
- Grid Generation Process (3)
- Field Setups/Presets (4)
- Field Designer Window (5-8)

2: Designing Your Field Setup:
- Your first Field Setup (9-10)
- Workflow hints (10)
- Optimizing Generation Duration (11)

3: Using many Field Setups:
- Build Plan (12)
- Example Generating Components Descriptions (1)

4: Additionals:
- Objects Stamper (13)
- Objects Multi Emitter (13)
- Pipe Generator (13)
- Checker Field Framework (13)

5: Advanced Specification:
- Global Rules (14)
- Field Setup Commands (14)
- Field Setup Variables (14)
- Injecting (14)

6: Coding Custom Spawn Rules (15-16)

7: Build Planner and Node Graph (17-24)
- Build Planner (18)
- Field Planner (19-20)
- Node Graph (21-22)
- Build Planner Executor (23)
- Field Setup Compositions (24)

1: The Procedural Grid Generation System

Grid Generation Process (Field Setups):

Before working with Procedural Generation Grid you need to know what are the
fundamentals of its logic.

System runs spawning rules for every cell of the grid provided by the user.

The order of provided grid cells modificators () is very important!

For example: when you want to align some furniture underneath the walls, first you
need to spawn walls. Furniture requires information where and how are placed walls,
this information will appear after calling wall spawning modificators.

When you want to create more complex architecture then sometimes logic can get
more complicated, keep that in mind.

Field Setup is the main asset type of the whole package, it contains groups

(packs) of grid modificators which are spawning or removing objects
generated on grid.
You can group modificators, you can find it very useful. As example: you can make a

group of field modificators which spawns the whole interior room with props
inside. You can do separated Groups of Modificators, one with base interior spawn
like: walls, floors, ceiling etc. other group with light lamps, or other cosmetics and
another Modificators Group with props like furniture, debris etc.
Then in Field Setup you can freely assign groups to be executed, for example group
of walls as first, then run cosmetics group and in the end select your props
modificators group.

Field Modificators can have variant files, variants can be created using the “V” button
which you can find in Field Designer Window or Inspector window of Modificators
Pack. Variant means that Field Modificator is using all rules of parent Field
Modificator but can change prefabs setted inside it, so you don’t need to set up rules
multiple times when you just need to change the look of some walls as an example.

Procedural Generation Grid system is not generating game objects during cell
checking/spawn rule execution process, it spawns them at the end, all spawn data
is contained within additional classes which are used after all Field Setup’s rules are
computed.
You can watch the fundamentals tutorials here.

https://www.youtube.com/watch?v=MjdGnLfh3O4&list=PL6MURe5By90mRPke0_vkxaqu0lRfeI8zl

Field Setups/Presets:

Package offers preset structure which can help you a lot.
Take a quick look on relations between different instances:

In most cases you will use Field Designer Window which you can open through
“Window->FImpossible Creations->Level Design->Grid Field Designer”

Field Setup is the root of what is spawned on the provided grid.

Field Designer Window is dedicated to focus on spawning logics, not on
creating gameplay shaped grid. Debug grid visible when the Field
Designer Window is opened will disappear and be forgotten after closing
the window. You should edit Field Setup files only through Field Designer Window
(it opens automatically when double-click on Field Setup File)

Scene Preview Settings:
Configure how you want preview grid generation on gizmos or with spawning prefabs
on the scene (slower).

(Repose is changing position of Field Designer after scripts compilation)

Test Generating Settings:
Configure on what grids you want to
test your spawning logics, you can
simply generate random scaled
rectangle grids, or paint on scene grid
as you like or generate branched
tunnels.

Grid will be generated each time you change any
rule through the inspector window if “Auto
Spawn” is enabled or you can trigger it with
“Generating Buttons” lower in the Field Designer
window.

Field Setup Parameters:

Configure field to objects you will spawn on
grid, it’s best to fit CellSize to floor/wall tiles
(but you can make it smaller and spawn floor/wall tiles
with grid scaleUp features - advanced)

Cell Instructions Commands can be used when
the grid on which Field Setup is used provides
additional data on which cells commands should
be used. It’s really useful for making doors / door
holes etc. but can also be used for many other
things.

Field Variables can be used for controlling some rules
parameters from FiledSetup level or through injecting
(described later)
Some rules parameters have possibility to be used by
Field Variable, you can identify them by a half white
dot which must be pressed to assign variable:

To work with a field designer you must create a FieldSetup file inside your project
directory, the best place them in a new directory since you probably will create a few
of them later.

After creating the FieldSetup preset file you will see the “Modification
Packs” list. (FieldSetup is created with a root (built-in) modificators pack but can
use multiple other packs in a shared way)

Inside the box below there are displayed Field Modificators which are inside
currently selected Modificators Pack.

After creating the preset there is just a root modification pack and no Field
Modificators.

To know what are the buttons on the right, just enter on them inside the Unity
Editor and a tooltip will appear.

Now you can start adding Field Modificators by pressing the “+” button.

You can keep Field Modificators inside Modificators Pack (in root pack then
also inside FieldSetup without creating additional file inside project directory)
In most cases you will use “IN” button to create a new FieldModificator
and put it automatically inside ModificatorsPack.
With toggle on the left you will quickly disable / enable Modificator, very
helpful when designing rules.
With “˄” and “˅” buttons you will change order of modificators which is
very important, since each modificator have only access to field state on
modificators executed before it.
To know what other buttons are doing, just enter on them inside Unity Editor
and tooltip will appear.

When you have modificators, just hit buttons on the left “[0]”, “[1]” etc.
to display Field Modification inside the inspector window.
Clicking on these buttons with the right mouse button will display additional options
for duplicate modificator, export copy or variant.

2: Designing Your Field Setup

Your first field setup:
Open Field Designer Window and create a Field Setup preset using the “New” button.
Unfold “Built-in Field’s Mods” to display Field’s modificators list.
Hit “+” button to add a new field in list, hit “IN” to generate a new Modificator inside
Field Setup’s asset file.
Hit the “0” button or double click on the Modificator field to display it’s options.

Field Spawners:
Inside the Field Modificator window you can assign prefabs for spawning.
Hit the “Add Spawner” button and select the prefab you want to generate.
Without any rule setted, the spawner will generate selected prefabs on every
cell of the provided grid.
Now you can add rules to define how your objects should be generated.
Field spawners can have assigned tags for rules to detect wanted objects on
cells, you can assign multiple tags by using “,” commas like
Prop,Lamp,OnCeiling. Tag assigned to FieldModificator will be applied to all
spawners within.
I recommend checking the second part of the main tutorial playlist.

Field Rules:
When you hit “Add Rule” button you will see different categories to choose
from. You will find rules for moving/rotating spawned objects, for allowing to
generate in certain conditions or more complex rules which are doing many
things at once.
Each rule contains description which can be displayed when you enter on it’s
header inside inspector window (after adding it to spawner)

You can reverse/negate rule logics, which is pretty important, sometimes you
might want to get opposite effect from some rule, then just click ‘#’ button to
negate rule logic. This feature is very useful and it’s worth remembering.

You can do the same with tags, adding “!” before tag name will make rules
affect every tag excluding ones with “!”.
Example: “!Floor,!Ceiling” so all spawns without Floor and Ceiling tag will be
gathered by rule algorithm.

https://www.youtube.com/watch?v=YJkfqEtJyzM&list=PL6MURe5By90mRPke0_vkxaqu0lRfeI8zl&index=2

Short description for each Rules Category:

Transforming: Rules which change only position, rotation or scale.
Quick Solutions: More complex rules with algorithms which replaces usage of
multiple other rules to get desired effect with just one rule.
Placement: Checking conditions related to cells placement on grid.
Other: Just helper decorators, not changing anything in grid.
Modelling: Rules related to changing generated objects appearance etc.
Field And Grid: Rules related to field variables, other fields, grid size etc.
Count: Rules which are limiting count of spawned objects.
Collision: Rules related with collision check (procedural generation grid is
using mostly bounding box collision, no raycasting)
Cells: Rules which are modifying other cells, like removing spawns, preventing
generating for selected ones etc.

Setting up props:
For a more practical presentation on how to set up props on your grid check the
tutorial videos on Youtube.
Here are some tips: when you want to set some debris on the floor, use just
randomized positioning with Transforming rules, separate spawns with
Placement->Cell Distance rules using debris spawner name and in addition use
Count->Spawning Probability to avoid too many objects. Also don’t forget to set “Cell
Check Mode” of spawner to random for additional randomization.
If you want to generate wardrobes or other furniture, use Full Transforming->Get
Coordinates and gather coordinates from walls, adjust positioning and rotation plus
add similar count limits / distance separation like with debris.
If you want to generate groups of objects like a pile of card boxes, prepare a “Multi
Spawn Emitter” component and create a prefab out of it then spawn it in a similar
way like wardrobes.
If you want to generate multiple objects in one cell, like narrow shelves, try using
Quick Solutions->Sub Spawner to generate additional objects in the same cell but
with other customized rules.
If your model's origin/pivot is not starting in center/middle but in corners, you can
adjust it with some special nodes, check this tutorial for more info.

Complex Cases:
If you want to create curved walls with your levels or for example floors with leaks
on texture aligned to walls, use the power of Quick Solutions->Wall Placer and Floor
Placer components.

https://www.youtube.com/watch?v=GFPsPExMGXc&list=PL6MURe5By90mRPke0_vkxaqu0lRfeI8zl&index=3
https://www.youtube.com/watch?v=GFPsPExMGXc&list=PL6MURe5By90mRPke0_vkxaqu0lRfeI8zl&index=3
https://youtu.be/R_9wob5y-3Y

If you want to replace walls with damaged
versions every few wall segments, you can
use Full Transforming->Get Coordinates to
align with other wall, then Cells->Remove in
position to remove previous wall and replace it
with damaged version, then use similar
conditions like debris in previous manual
section, to spawn them every few segments.
In case you want to create a giant underground tunnel and cover small objects with
it, you can try using a scaled grids feature.

You can switch scaled grid for spawner with the toggle next to “Cell Check Mode”
Use Grid Painting to see how it works.

Common Logic Rules Nodes:
Most commonly used nodes are:
Full Transforming -> Get Coordinates
Quick Solutions -> Wall Placer, Floor Placer
Placement -> Distance to other, Check Cell Neighbours, If Cell Contains Tag
Count -> Spawning Probability
Cells -> Remove in Position

Optimizing:
If your generating process takes too long, you can optimize it a bit with
approach like follows:
Using “Cell Check Mode” called “Total Random” is not optimal, it’s shuffling all
grid cells, when you use Modificator on a large grid it’s better to use other cell
check modes.

It's best to set simplest logics as first in spawner, if the first simple check is
not allowed to spawn then the rest logics are ignored and will not cause CPU
overhead.

Simple logic nodes have “Lightweight” suffix in tooltip when you enter node's
header title.

3: Using Many Field Setups

Build Plan (Legacy - Check BUILD PLANNER for new approach):
Build Plan can be filled with customized settings for multiple Field Setups.
It can be used by other components to generate multiple grids.
You can prepare Field Setups for generating whole rooms like guest room, bathroom,
kitchen etc. and use other components to generate them in the wanted setup.

Check example scenes of generating dungeon game, which is using build plan to
generate key room, boss room etc. restrict their position to be near exit doors etc.
Also check this tutorial video for some more explanations.

Example Generating Components (Legacy):

Building Plan Generator (randomized generating): It's an old component which was
made at the alpha stage of this package. It’s not using the newest “CheckerField”
framework but can be found useful for some users. It’s trying to generate corridors
and rooms out of the provided room inside the Build Plan preset.
Facility Generator (randomized generating): It’s similar to BuildinPlanGenerator but
uses a “CheckerField” framework which supports rotating non-rectangular room
shapes to fit them to generated corridors and rooms.
Grid Painter (manual level design): It’s component which allows to paint cells on
scene, paint command guides very useful to set up doors between other Grid
Painters.
MiniCityGenerator (randomized generating): Simple component to generate roads
and buildings around them.
RectangleOfFieldsGenerator (controlled generating): Generates multiple FieldSetups
within a custom rectangle shape, useful when generating house buildings with
rooms inside them.
SimpleDungeonGenerator (randomized generating): Very similar to Building Plan
Generator and Facility Generator but with some different rules.
SimpleFieldGenerator (randomized generating): Simple code example of generating
objects with provided FieldSetup preset.

https://www.youtube.com/watch?v=DbZSq2PVKu8&list=PL6MURe5By90mRPke0_vkxaqu0lRfeI8zl&index=5

4: Additionals

Object Stamper:
Object Stamper is a component which can spawn objects on ground using
raycasting with randomization. There can be random prefabs and each can have its
own probability level to be chosen to spawn.
Add the ObjectsStampEmitter component and create a Stamper Preset using the
“New” button, open the preset and add prefabs through the inspector window.
Adjust random position/rotation/scale settings and raycasting settings.
Check restrictions and overlapping configuration to spawn objects according to your
needs. Now you can hit the “Randomize Preview” button to see ghost gizmos of
target object to spawn, you can create object with this component as prefab and use
with PGG or place around the scene to spawn randomized objects with raycasted
placement.

Object Multi Emitter:
It’s using an Object Stamper preset or multiple presets to spawn multiple objects in
configured areas. It is really useful when you want to generate piles of objects or
objects on wardrobes, tables.
It can make generated spaces much more fulfilled.

Pipe Generator:
Component which uses modules of any shape to generate path towards target or
random position. Modules must be prepared, meaning must have defined points to
which other modules can join with target out rotation at target point.
It can make generated spaces much more interesting.

Checker Field Framework (for programmers):
Checker Field classes are providing workflow for generating grids.
This framework is easy generating custom build plans by auto cell-path generating,
quick cell collision checking, snapping cells or groups of cells from one to another.
Check example generator components commented code lines for more.

5: Advanced Specification:

Global Rules:
Some rules have option to be
setted as global (“G” button)
When enabled, all spawners in Field
Modificator will have this rule
applied. Also when execution order matters, global rules setted lower will be
queued to be executed after all other rules in spawner, global rules on the top
will be queued to be executed before all other rules.

Field Setup Commands:
Field setup can have assigned
Instruction Commands definitions which
can be used by Grid Painter and custom
coded grid generators to create door
holes in walls by replacing wall model
with doorhole wall model. You can also use commands to just spawn
additional objects on the grid like painting fences etc. This Cell Instructions
opens many new possibilities for designing your Field Setup.

Field Setup Variables:
Field Variables can be used by spawn rules to
change their parameters.
In most cases you would like to use field variables when injecting modificators
to other field setups.

Injecting:
Injecting means running Field Modificator / Group
of them as addition to Field Setup without adding
them to the Field Setup preset file.

For example: you have Field Modificator which spawns enemies, you want to inject enemies spawner
to some rooms, but in room A you want to have a lot of enemies and in room B just a few of them. You
can use the Distance Check rule for setting spacing between enemies and assign to it Field Variable
(assigning? -> bottom of page 6) then override variables with the injecting field and change the field's
variable value up or down. (To assign variable modificator must be child of Field Setup with needed
variables)

6: Coding Custom Spawn Rules

If you want to code custom rule to be used in your Field Modificator Spawner, go to:
Right mouse button somewhere inside project directory -> Create -> Scroll and find
FImpossible Creations -> Procedural Generation -> Scripting Templates -> Choose
Template, name it and open automatically creates .cs file.
(If you use Assembly Definitions this file must be created in PGG’s directory or
directory with Assembly Definition referencing to PGG assembly)

Right away you can add your rule inside spawners under category “Custom”
You can change it by setting a different namespace for the class file.
Each spawn rule must have at least one visible public variable to avoid GUI errors!

Now depending on what your rule will do, you will have access to the current state of
the grid, to the spawn data grid is attempting to generate, Field Setup file when you
override right methods.

You should choose correct EProcedureType for your rule:
Procedure - Conditions + changing spawn properties
Rule - Conditions for spawning (override just CheckRuleOn())
Event - Just changing spawns properties (override just CellInfluence())
OnConditionsMet - Will be executed at the end only when all conditions are met
Coded - Running CheckRule and OnConditionsMet to give wide variety access

And override right methods:
CheckRuleOn() Executed on every cell until conditions are met
Use variable CellAllow to make rule allow or disallow spawn
CellInfluence() Executed only once when occupied cell is known after running all rule
checks
OnConditionsMetAction() Executed at the end of all rules if all conditions met

Check code of other rules to get acquainted with grid logic.
I suggest checking simpler ones at first, like SR_PushPosition,
SR_SpawningPropability.

Optional: To support
accessing spawns of scaled
grid’s cells you can use code
like this:

but if you don’t need scaled grid support you can use method like:
cell.GetSpawnsJustInsideCell()
Optional: To support Field Setup variables, you must add
public SpawnerVariableHelper VariableHandlerName; below your rule’s variable, it
will create this half-dot on the left of the property inside the inspector window.
Then you can use it in code like: VariableHandlerName.GetValue(defaultValue);
to make an effect in the rule algorithm, but you need to do one more thing to make all
of that work.
You need to override GetVariables() method and return your variable handlers in it.
You can use quick method if you need to use just one field variable handler in your
rule: return VariableHandlerName.GetListedVariable();

7: Build Planner (and Node Graph)

The Build Planner is in the early stage of development and it will be successfully
updated with new features until the end of the beta stage of the procedural
generation grid package.

Build Planner is defining areas to spawn objects and is providing guides for special
spawning like doorway cells etc.

In the future versions, Build Planner node graph will be enough to replace all of the
current generator scripts like “Facility Generator”, “Dungeon Generator” etc. which
will become deprecated (but still available in the “PGG Legacy Coded Generators”
unitypackage)

With a prepared Build Planner Preset you need a game object on the scene with
Build Planner Executor component which you use for gameplay / editor usage.

To start working with Build Planner, go to Window -> Fimpossible Creations -> PGG
Build Planner (Build Layout)

With the build planner window you will
quickly preview your work and prepare
how many grids you want to generate,

using Field Planners .

Prepare the main variables for every

field planner’s node graph .

You will also define order of the field
planners (it works in the similar way as

with field modificators in the field

setups)

The preview of build planner is visible on the scene center, it’s good to use it on the
empty scene in your project. If your scene view camera is far from preview position,
the camera button will appear next to the “Preview Settings” bookmark.

When you select the Field Planner the new window will open in which you will
prepare a field / grid to generate and place on the build plan layout.

First foldout of the Field Planner is “Field Planner Preparation”

There you define type of the field
planner (right now only ‘Field
Planner’ type is available, in the
future there will be more)

You can select the default Field
Setup which will be automatically
chosen later, in the build planner
executor component on the game
scene.

You can define how many instances of the field planner should appear on the build
plan. Instances are like duplicates / copies, it requires node graph logics prepared for
use of multiple instances.
Expose instance count will make instance count editable later in the build planner
executor component on the game scene.

Preview Cell Size is the scale of a single cell of target grid area. Right now it’s
recommended to use field setups of the same cell size but in the future support for
different scaled grids will be improved.

Round to scale will automatically round position of the field to not be fractioned,
when cell size is 2 then position x = 2.4 will be rounded to 2.0
It can be helpful when designing some types of the build layout.

Finally you can define variables which will be used by the node graph and will be
visible and editable later in the build planner executor component.

Useful tips for the variables:

When you set type “number”, “int” there will appear a toggle which will make the variable appear later
in the build planner executor as the field setup command selector.

When you use the Vector3 position you can enable handles toggles to display helpful
gizmos on the scene, or choose some transform position to drive your node graph
logic!

Second Foldout is “Field Initial Shape”

There you define the starting
shape for your field planner
which is generated with the
chosen algorithm. There few
algorithms are provided but in
the future versions there will be
more and you will be able to
code your own initial shape
generator algorithm.

In some cases you will not need any shape because you can generate it with the
node graph. As example: you will not need initial shape if you will use some field
planner just to generate a path-finder connection between two field planners.

You can toggle “Expose Detection Shape” to make it editable later in the build
planner executor component.

And the last part is node graph section

There you can display a node graph and work with it, or open the same graph in the
separated window if you will.
Every Field Planner owns two graphs. “First Procedures” and “Post Procedures”.

First Procedures graphs are called as ordered in the Build Planner Preset
It’s dedicated to execute here main layout placement logics.

Post Procedures are called again as ordered in Build Planner Preset, but called after
all graphs in First Procedures done their job. So Post Procedures are dedicated for
creating final relations between field planners, when the whole layout is prepared and
defined. When you know where each of the rooms will be placed, you can define
relations like preventing spawning windows between rooms on opposite sides etc.

The GUI element next to “Post Procedures” is just a shortcut for switching between
field planners stored in the build planner preset.

The Field Planner Node Graph:

With a node graph you will define where grid areas will be placed.
You can generate additional shapes from one point to another and join/subtract cells
of grids, prepare cells instructions to be added into grids, and design it to your
project requirements.

In the future updates this documentation for node graphs will expand.

Node graph starts its logic with
the “Procedures Start” node
which needs to be connected
with some other node.

When node is triggered, it runs its
coded logic, reads values from
connected ports and uses them.

When a node finishes its job the
trigger signal moves forward to
the next connected node until
there is no connection to the next
node in the graph.

Some of the nodes contain arrow blocks on the top and
on the bottom, that means this is “Execution Node” and
it will call its main logic when some trigger connection
reaches it.

Nodes with ports only will compute their
logics when some of the execution nodes
call them during the generating build layout
preview process.

When connecting some ports you can see different values in the node than it will be
computed, when graph logics will reach the port (preview needs to be triggered)
values will be refreshed.

Graph is expanding its cavas in the right-down direction, meaning it will increase its
size automatically when you put some nodes near to the low or right edge of view.

When the plugin will reach the ending stage of
the BETA there will be provided description for
each graph node. For now you must rely on the
examples and provided tooltips on the node
header / parameter fields.

Many of the nodes have the unfold option ▲ when you click on it, it will display more
advanced options of the node.

Function Nodes:

Function nodes are groups of coded
nodes condensed into one simple node
which can be used in the field planner
graphs or inside another function nodes.
Function nodes are identified with “(f)” in
header name, quick double clicking left
mouse button will open function node
graph. (there is also option for it when
hitting right mouse button on the node in
node graph)

You can create new function node by hitting right mouse button on some node on
any graph and choosing “Create Custom Function (f) Node” option or by clicking
right mouse button in the project browser and going to Create->Fimpossible
Creations->Procedural Generation->Create Build Planner Function Node

Function nodes can use nodes which planner graphs can’t use.
These are “Input”, “Parameter” and “Output” nodes, which will appear on the node
drawer of the prepared function node.

Hitting the icon will allow you to change the name of the port display name.
(you can do it also through inspector window which will appear when selecting node)
Beware for changing node count/names/types after adding one of them to the other
node graphs, the function node refresh will be improved in the future versions!

Node Graph Tips:

Node Graph offers some shortcuts.
If you keep pushing the ‘A’ button on your keyboard and hit the left mouse button on
the grid canvas, a math “Add” node will be created. When you keep pressing the “1”
number key, there will be a value node. There are prepared many shortcuts for
different keys you can check (it will be described in the manual when beta stage of
the package will be reaching end)

Pressing the ‘R’ key on your keyboard and hitting the middle mouse button will trigger
Build Planner Window refresh, you can also double click the middle mouse button to
do the same.

Build Planner Executor:

Build Planner Executor is a component which you should add to the new empty game
object. Generated structures will be setted as child objects of the executor object in
the scene hierarchy and generated in its space, so you can freely move / rotate the
executor object on the scene.

Build Planner Executor will create
GUI accommodated with the build
planner preset names, variables
and field planners names /
variables / preparation.

Build Planner Executor is
generating objects using Grid
Painters. So when you hit
“Generate Objects” all generated
areas will be accessible for
debugging, further editing and free
moving/rotating on the scene.

Executor is generating build planner preset logics with changed cell size as the
Field Setups grid cell sizes so the result can look different than with the Build
Planner Window preview if “Preview Cell Size” is different!

Field Setup Compositions:

When spawning objects with Build Planner Executor or Grid Painters now you have
the possibility to alternatively compose the Field Setups.

You can easily replace spawned prefabs with new chosen ones, replace some
parameters / variables or disable modificators/packs individually.

In the future the manual will expand more!

If you like this package please visit my asset store page for more or
write a review for this asset ;)

